segunda-feira, 17 de maio de 2010

Pecuária de Goiânia 2010 (65° Exposição Agropecuária de Goiás)




A grade de shows da 65ª Exposição Agropecuária de Goiás, programada para o período de 14 a 30 de maio, foi divulgada, Ontem, 31, pelo diretor administrativo da Sociedade Goiana de Pecuária e Agricultura, Pedro Alves de Oliveira.

Os shows artísticos realizados no Parque Agropecuário Dr. Pedro Ludovico Teixeira constituem a maior atração de Goiânia. Dependendo do artista e da condição climática do dia, o show pode reunir até 45 mil pessoas. Com esses eventos, a sociedade goianiense cria expectativa e aguarda com certa ansiedade a sua grande festa agropecuária, que se tornou uma tradição em mais de meio século.

Nomes consagrados da música sertaneja como Bruno e Marrone, Fernando e Sorocaba e João Carreiro e Capataz, ao lado de duplas em ascensão alegrarão as noites goianienses na segunda quinzena de maio. Outras participações estão programadas para o Espaço Cultural da SGPA, envolvendo cantores de raízes ou da MPB de Goiás.

Shows Sertanejos:

Dia 15, Zé Henrique e Gabriel.
Dia 20, Luan Santana.
Dia 21, Bruno e Marrone.
Dia 22, Pedra Letícia.
Dia 23, João Bosco e Vinícius.
Dia 24, Marcos e Fernando.
Dia 26, Regis Danesi.
Dia 27, Fernando e Sorocaba.
Dia 28, João Carreiro e Capataz.
Dia 29, Di Paulo e Paulino.

Ingressos da Pecuária desse ano serão no valo de R$ 20 (meia R$ 10) nos dias de shows e R$ 10 (meia R$ 5) para os dias apenas de exposições

Rancho Toyota Pecuária 2010 (Grade de Shows)

Dia 12 - Humberto e Ronaldo
Dia 14 - Jammil e Uma Noites
Dia 15 - Pedro Paulo e Mateus
Dia 20 - Revelação
Dia 21 - Cheiro de Amor
Dia 22 - Nechiville
Dia 23 - Alexandre Peixe
Dia 27 - Jeito Moleque
Dia 28 - Latino
Dia 29 - Gustavo Lima

quarta-feira, 10 de março de 2010

Hubs, HUBS, hubs.

Os Hubs são dispositivos concentradores, responsáveis por centralizar a distribuição dos quadros de dados em redes fisicamente ligadas em estrelas. Funcionando assim como uma peça central, que recebe os sinais transmitidos pelas estações e os retransmite para todas as demais.



Existem vários tipos de hubs, vejamos:

Passivos: O termo “Hub” é um termo muito genérico usado para definir qualquer tipo de dispositivo concentrador. Concentradores de cabos que não possuem qualquer tipo de alimentação elétrica são chamados hubs passivos funcionando como um espelho, refletindo os sinais recebidos para todas as estações a ele conectadas. Como ele apenas distribui o sinal, sem fazer qualquer tipo de amplificação, o comprimento total dos dois trechos de cabo entre um micro e outro, passando pelo hub, não pode exceder os 100 metros permitidos pelos cabos de par trançado.
Ativos: São hubs que regeneram os sinais que recebem de suas portas antes de enviá-los para todas as portas. Funcionando como repetidores. Na maioria das vezes, quando falamos somente “hub” estamos nos referindo a esse tipo de hub. Enquanto usando um Hub passivo o sinal pode trafegar apenas 100 metros somados os dois trechos de cabos entre as estações, usando um hub ativo o sinal pode trafegar por 100 metros até o hub, e após ser retransmitido por ele trafegar mais 100 metros completos.
Inteligentes: São hubs que permitem qualquer tipo de monitoramento. Este tipo de monitoramento, que é feito via software capaz de detectar e se preciso desconectar da rede estações com problemas que prejudiquem o tráfego ou mesmo derrube a rede inteira; detectar pontos de congestionamento na rede, fazendo o possível para normalizar o tráfego; detectar e impedir tentativas de invasão ou acesso não autorizado à rede entre outras funções, que variam de acordo com a fabricante e o modelo do Hub.
Empilháveis: Também chamado casceteável (stackable). Esse tipo de hub permite a ampliação do seu número de portas.Veremos esse tipo de hub mais detalhadamente adiante.


CASCATEAMENTO
Existe a possibilidade de conectar dois ou mais hubs entre si. Quase todos os hubs possuem uma porta chamada “Up Link” que se destina justamente a esta conexão. Basta ligar as portas Up Link de ambos os hubs, usando um cabo de rede normal para que os hubs passem a se enxergar.

Sendo que existem alguns hubs mais baratos não possuem a porta “Up Link”, mais com um cabo cross-over pode-se conectar dois hubs. A única diferença neste caso é que ao invés de usar as portas Up Link, usará duas portas comuns.

Note que caso você esteja interligando hubs passivos, a distância total entre dois micros da rede, incluindo o trecho entre os hubs, não poderá ser maior que 100 metros, o que é bem pouco no caso de uma rede grande. Neste caso, seria mais recomendável usar hubs ativos, que amplificam o sinal.



EMPILHAMENTO
O recurso de conectar hubs usando a porta Up Link, ou usando cabos cross-over, é utilizável apenas em redes pequenas, pois qualquer sinal transmitido por um micro da rede será retransmitido para todos os outros. Quanto mais Computadores tivermos na rede, maior será o tráfego e mais lenta a rede será e apesar de existirem limites para conexão entre hubs e repetidores, não há qualquer limite para o número de portas que um hub pode ter. Assim, para resolver esses problemas os fabricantes desenvolveram o hub empilhável. Esse hub possui uma porta especial em sua parte traseira, que permite a conexão entre dois ou mais hubs. Essa conexão especial faz com que os hubs sejam considerados pela rede um só hub e não hubs separados, eliminando estes problemas. O empilhamento só funciona com hubs da mesma marca.

A interligação através de porta especifica com o cabo de empilhamento (stack) tem velocidade de transmissão maior que a velocidade das portas.

Repetidores, repetidores de sinais, REPETIDORES DE SINAIS, REPETIDORES.

O repetidor é um dispositivo responsável por ampliar o tamanho máximo do cabeamento da rede. Ele funciona como um amplificador de sinais, regenerando os sinais recebidos e transmitindo esses sinais para outro segmento da rede.

Como o nome sugere, ele repete as informações recebidas em sua porta de entrada na sua porta de saída. Isso significa que os dados que ele mandar para um micro em um segmento, estes dados estarão disponíveis em todos os segmentos, pois o repetidor é um elemento que não analisa os quadros de dados para verificar para qual segmento o quadro é destinado. Assim ele realmente funciona como um “extensor” do cabeamento da rede. É como se todos os segmentos de rede estivessem fisicamente instalados no mesmo segmento.



Apesar de aumentar o comprimento da rede, o repetidor traz como desvantagem diminuir o desempenho da rede. Isso ocorre porque, como existirão mais maquinas na rede, as chances de o cabeamento estar livre para o envio de um dado serão menores. E quando o cabeamento esta livre, as chances de uma colisão serão maiores, já que teremos mais maquinas na rede.

Atualmente você provavelmente não encontrara repetidores como equipamento independentes, esse equipamento esta embutido dentro de outros, especialmente do hub. O hub é, na verdade, um repetidor (mas nem todo repetidor é um hub), já que ele repete os dados que chegam em uma de suas portas para todas as demais portas existentes.

Cabeamento Estruturado, CABEAMENTO ESTRUTURADO, cabeamento estruturado basico, CABEAMENTO ESTRUTURADO BASICO.

As redes mais populares utilizam a arquitetura Ethernet usando cabo par trançado sem blindagem (UTP). Nessa arquitetura, há a necessidade de um dispositivo concentrador, tipicamente um hub, para fazer a conexão entre os computadores.

Em redes pequenas, o cabeamento não é um ponto que atrapalhe o dia-a-dia da empresa, já que apenas um ou dois hubs são necessários para interligar todos os micros. Entretanto, em redes médias e grandes a quantidade de cabos e o gerenciamento dessas conexões pode atrapalhar o dia-a-dia da empresa. A simples conexão de um novo micro na rede pode significar horas e horas de trabalho (passando cabos e tentando achar uma porta livre em um hub).

É ai que entra o Cabeamento Estruturado. A idéia básica do cabeamento estruturado fornece ao ambiente de trabalho um sistema de cabeamento que facilite a instalação e remoção de equipamentos, sem muita perda de tempo. Dessa forma, o sistema mais simples de cabeamento estruturado é aquele que provê tomadas RJ-45 para os micros da rede em vez de conectarem o hub diretamente aos micros. Podendo haver vários pontos de rede já preparados para receber novas maquinas. Assim, ao trocar um micro de lugar ou na instalação de um novo micro, não haverá a necessidade de se fazer o cabeamento do micro até o hub; este cabeamento já estará feito, agilizando o dia-a-dia da empresa.



A idéia do cabeamento estruturado vai muito alem disso. Além do uso de tomadas, o sistema de cabeamento estruturado utiliza um concentrador de cabos chamado Patch Panel (Painel de Conexões). Em vez de os cabos que vêm das tomadas conectarem-se diretamente ao hub, eles são conectados ao patch panel. Dessa forma, o patch panel funciona como um grande concentrador de tomadas.



O patch panel é um sistema passivo, ele não possui nenhum circuito eletrônico. Trata-se somente de um painel contendo conectores. Esse painel é construído com um tamanho padrão, de forma que ele possa ser instalado em um rack.



O uso do patch panel facilita enormemente a manutenção de redes medis e grandes. Por exemplo, se for necessário trocar dispositivos, adicionar novos dispositivos (hubs e switches, por exemplo) alterar a configuração de cabos, etc., basta trocar a conexão dos dispositivos no patch panel, sem a necessidade de alterar os cabos que vão até os micros. Em redes grandes é comum haver mais de um local contendo patch panel. Assim, as portas dos patch panels não conectam somente os micros da rede, mas também fazem a ligação entre patch panels.

Para uma melhor organização das portas no patch panel, este possui uma pequena área para poder rotular cada porta, isto é, colocar uma etiqueta informando onde a porta esta fisicamente instalada.

Dessa forma, a essência do cabeamento estruturado é o projeto do cabeamento da rede. O cabeamento deve ser projetado sempre pensado na futura expansão da rede e na facilitação de manutenção. Devemos lembrar sempre que, ao contrario de micros e de programas que se tornam obsoletos com certa facilidade, o cabeamento de rede não é algo que fica obsoleto com o passar dos anos. Com isso, na maioria das vezes vale à pena investir em montar um sistema de cabeamento estruturado.

TESTAR O CABO, testar o cabo, usando testador de cabos.

Para testar o cabo é muito fácil utilizando os testadores de cabos disponíveis no mercado. Normalmente esses testadores são compostos de duas unidades independentes. A vantagem disso é que o cabo pode ser testado no próprio local onde fica instalado, muitas vezes com as extremidades localizadas em recintos diferentes. Chamaremos os dois componentes do testador: um de testador e o outro de terminador. Uma das extremidades do cabo deve ser ligada ao testador, no qual pressionamos o botão ON/OFF. O terminador deve ser levado até o local onde está a outra extremidade do cabo, e nele encaixamos o outro conector RJ-45.



Uma vez estando pressionado o botão ON/OFF no testador, um LED irá piscar. No terminador, quatro LEDs piscarão em seqüência, indicando que cada um dos quatro pares está corretamente ligado. Observe que este testador não é capaz de distinguir ligações erradas quando são feitas de forma idêntica nas duas extremidades. Por exemplo, se os fios azul e verde forem ligados em posições invertidas em ambas as extremidades do cabo, o terminador apresentará os LEDs piscando na seqüência normal. Cabe ao usuário ou técnico que monta o cabo, conferir se os fios em cada conector estão ligados nas posições corretas.

Para quem faz instalações de redes com freqüência, é conveniente adquirir testadores de cabos, lojas especializadas em equipamentos para redes fornecem cabos, conectores, o alicate e os testadores de cabos, além de vários outros equipamentos. Mais se você quer apenas fazer um cabo para sua rede, existe um teste simples para saber se o cabo foi crimpado corretamente: basta conectar o cabo à placa de rede do micro e ao hub. Tanto o LED da placa quanto o do hub deverão acender. Naturalmente, tanto o micro quanto o hub deverão estar ligados.

Não fique chateado se não conseguir na primeira vez, pois a experiência mostra que para chegar à perfeição é preciso muita prática, e até lá é comum estragar muitos conectores. Para minimizar os estragos, faça a crimpagem apenas quando perceber que os oito fios chegaram até o final do conector. Não fixe o conector se perceber que alguns fios estão parcialmente encaixados. Se isso acontecer, tente empurrar mais os fios para que encaixem até o fim. Se não conseguir, retire o cabo do conector, realinhe os oito fios e faça o encaixe novamente.

Como confeccionar os Cabos, COMO CONFECCIONAR OS CABOS PAR TRANÇADO, fazendo cabos par trançado.

A montagem do cabo par trançado é relativamente simples. Além do cabo, você precisará de um conector RJ-45 de pressão para cada extremidade do cabo e de um alicate de pressão para conectores RJ-45 também chamado de Alicate crimpador. Tome cuidado, pois existe um modelo que é usado para conectores RJ-11, que têm 4 contatos e são usados para conexões telefônicas



Assim como ocorre com o cabo coaxial, fica muito difícil passar o cabo por conduítes e por estruturas usadas para ocultar o cabo depois que os plugues RJ-45 estão instalados. Por isso, passe o cabo primeiro antes de instalar os plugues. Corte o cabo no comprimento desejado. Lembre de deixar uma folga de alguns centímetros, já que o micro poderá posteriormente precisar mudar de lugar além disso você poderá errar na hora de instalar o plugue RJ-45, fazendo com que você precise cortar alguns poucos centímetros do cabo para instalar novamente outro plugue.

Para quem vai utilizar apenas alguns poucos cabos, vale a pena comprá-los prontos. Para quem vai precisar de muitos cabos, ou para quem vai trabalhar com instalação e manutenção de redes, vale a pena ter os recursos necessários para construir cabos. Devem ser comprados os conectores RJ-45, algumas um rolo de cabo, um alicate para fixação do conector e um testador de cabos. Não vale a pena economizar comprando conectores e cabos baratos, comprometendo a confiabilidade.

O alicate possui duas lâminas e uma fenda para o conector. A lâmina indicada com (1) é usada para cortar o fio. A lâmina (2) serve para desencapar a extremidade do cabo, deixando os quatro pares expostos. A fenda central serve para prender o cabo no conector.

(1): Lâmina para corte do fio
(2): Lâmina para desencapar o fio
(3): Fenda para crimpar o conector

Corte a ponta do cabo com a parte (2) do alicate do tamanho que você vai precisar, desencape (A lâmina deve cortar superficialmente a capa plástica, porém sem atingir os fios) utilizando a parte (1) do alicate aproximadamente 2 cm do cabo. Pois o que protege os cabos contra as interferências externas são justamente as tranças. À parte destrançada que entra no conector é o ponto fraco do cabo, onde ele é mais vulnerável a todo tipo de interferência Remova somente a proteção externa do cabo, não desencape os fios.



Identifique os fios do cabo com as seguintes cores:
Branco com verde
Verde
Branco com laranja
Laranja
Branco com azul
Azul
Branco com marrom
Marrom

Desenrole os fios que ficaram para fora do cabo, ou seja, deixe-os “retos” e não trançados na ordem acima citada, como mostra a figura abaixo



Corte os fios com a parte (1) do alicate em aproximadamente 1,5cm do invólucro do cabo.Observe que no conector RJ-45 que para cada pino existe um pequeno “tubo” onde o fio deve ser inserido. Insira cada fio em seu “tubo”, até que atinja o final do conector. Lembrando que não é necessário desencapar o fio, pois isto ao invés de ajudar, serviria apenas para causar mau contato, deixado o encaixe com os pinos do conector “folgado”.



Ao terminar de inserir os fios no conector RJ-45, basta inserir o conector na parte (3) do alicate e pressioná-lo. A função do alicate neste momento é fornecer pressão suficiente para que os pinos do conector RJ-45, que internamente possuem a forma de lâminas, esmaguem os fios do cabo, alcançando o fio de cobre e criando o contato, ao mesmo tempo, uma parte do conector irá prender com força a parte do cabo que está com a capa plástica externa. O cabo ficará definitivamente fixo no conector.

Após pressionar o alicate, remova o conector do alicate e verifique se o cabo ficou bom, par isso puxe o cabo para ver se não há nenhum fio que ficou solto ou folgado.

Uma dica que ajuda bastante e a utilização das borrachas protetoras dos conectores RJ-45 pois o uso desses traz vários benefícios com facilita a identificação do cabo com o uso de cores diferentes, mantém o conector mais limpo, aumenta a durabilidade do conector nas operações de encaixe e desencaixe, dá ao cabo um acabamento profissional.



Montar um cabo de rede com esses protetores é fácil. Cada protetor deve ser instalado no cabo antes do respectivo conector RJ-45. Depois que o conector é instalado, ajuste o protetor ao conector.

CABO PAR TRANÇADO, cabos par trançado, TOPOLOGIA DE CABOS PAR TRANÇADO, topologia de cabos par trançado

O cabo par trançado surgiu com a necessidade de se ter cabos mais flexíveis e com maior velocidade de transmissão, ele vem substituindo os cabos coaxiais desde o início da década de 90. Hoje em dia é muito raro alguém ainda utilizar cabos coaxiais em novas instalações de rede, apesar do custo adicional decorrente da utilização de hubs e outros concentradores. O custo do cabo é mais baixo, e a instalação é mais simples.

O nome “par trançado” é muito conveniente, pois estes cabos são constituídos justamente por 4 pares de cabos entrelaçados. Os cabos coaxiais usam uma malha de metal que protege o cabo de dados contra interferências externas; os cabos de par trançado por sua vez, usam um tipo de proteção mais sutil: o entrelaçamento dos cabos cria um campo eletromagnético que oferece uma razoável proteção contra interferências externas.



Existem basicamente dois tipos de cabo par trançad Os Cabos sem blindagem chamados de UTP (Unshielded Twisted Pair) e os blindados conhecidos como STP (Shielded Twisted Pair). A única diferença entre eles é que os cabos blindados além de contarem com a proteção do entrelaçamento dos fios, possuem uma blindagem externa (assim como os cabos coaxiais), sendo mais adequados a ambientes com fortes fontes de interferências, como grandes motores elétricos e estações de rádio que estejam muito próximas. Outras fontes menores de interferências são as lâmpadas fluorescentes (principalmente lâmpadas cansadas que ficam piscando), cabos elétricos quando colocados lado a lado com os cabos de rede e mesmo telefones celulares muito próximos dos cabos.



Na realidade o par trançado sem blindagem possui uma ótima proteção contra ruídos, só que usando uma técnica de cancelamento e não através de uma blindagem. Através dessa técnica, as informações circulam repetidas em dois fios, sendo que no segundo fio a informação possui a polaridade invertida. Todo fio produz um campo eletromagnético ao seu redor quando um dado é transmitido. Se esse campo for forte o suficiente, ele irá corromper os dados que estejam circulando no fio ao lado (isto é, gera Ruído). Em inglês esse problema é conhecido como cross-talk.

A direção desse campo eletromagnético depende do sentido da corrente que esta circulando no fio, isto é, se é positiva ou então negativa. No esquema usado pelo par trançado, como cada par transmite a mesma informação só que com a polaridade invertida, cada fio gera um campo eletromagnético de mesma intensidade mas em sentido contrario. Com isso, o campo eletromagnético gerado por um dos fios é anulado pelo campo eletromagnético gerado pelo outro fio.

Além disso, como a informação é transmitida duplicada, o receptor pode facilmente verificar se ela chegou ou não corrompida. Tudo o que circula em um dos fios deve existir no outro fio com intensidade igual, só que com a polaridade invertida. Com isso, aquilo que for diferente nos dois sinais é ruído e o receptor tem como facilmente identificá-lo e eliminá-lo.

Quanto maior for o nível de interferência, menor será o desempenho da rede, menor será a distância que poderá ser usada entre os micros e mais vantajosa será a instalação de cabos blindados. Em ambientes normais porém os cabos sem blindagem costumam funcionar bem.

Existem no total, 5 categorias de cabos de par trançado. Em todas as categorias a distância máxima permitida é de 100 metros. O que muda é a taxa máxima de transferência de dados e o nível de imunidade a interferências. Os cabos de categoria 5 que tem a grande vantagem sobre os outros 4 que é a taxa de transferência que pode chegar até 100 mbps, e são praticamente os únicos que ainda podem ser encontrados à venda, mas em caso de dúvida basta checas as inscrições no cabo, entre elas está a categoria do cabo, como na foto abaixo:



A utilização do cabo de par trançado tem suas vantagens e desvantagens, vejamos as principais:

Vantagens:
--> Preço. Mesma com a obrigação da utilização de outros equipamentos na rede, a relação custo beneficia se torna positiva.
--> Flexibilidade. Como ele é bastante flexível, ele pode ser facilmente passado por dentro de conduítes embutidos em paredes.
--> Facilidade. A facilidade com que se pode adquirir os cabos, pois em qualquer loja de informática existe esse cabo para venda, ou até mesmo para o próprio usuário confeccionar os cabos.
--> Velocidade. Atualmente esse cabo trabalha com uma taxa de transferência de 100 Mbps.

Desvantagens
--> Comprimento. Sua principal desvantagem é o limite de comprimento do cabo que é de aproximadamente 100 por trecho.
--> Interferência. A sua baixa imunidade à interferência eletromagnética, sendo fator preocupante em ambientes industriais.

No cabo de par trançado tradicional existem quatro pares de fio. Dois deles não são utilizados pois os outros dois pares, um é utilizado para a transmissão de dados (TD) e outro para a recepção de dados (RD). Entre os fios de números 1 e 2 (chamados de TD+ e TD– ) a placa envia o sinal de transmissão de dados, e entre os fios de números 3 e 6 (chamados de RD+ e RD– ) a placa recebe os dados. Nos hubs e switches, os papéis desses pinos são invertidos. A transmissão é feita pelos pinos 3 e 6, e a recepção é feita pelos pinos 1 e 2. Em outras palavras, o transmissor da placa de rede é ligado no receptor do hub ou switch, e vice-versa.



(ALERT) Um cuidado importante a ser tomado é que sistemas de telefonia utilizam cabos do tipo par trançado, só que este tipo de cabo não serve para redes locais.

CABO COAXIAL, cabo coaxial, topologia de cabos coaxial, TOPOLOGIA DE CABOS COAXIAL

O cabo coaxial foi o primeiro cabo disponível no mercado, e era até a alguns anos atrás o meio de transmissão mais moderno que existia em termos de transporte de dados, existem 4 tipos diferentes de cabos coaxiais, chamados de 10Base5, 10Base2, RG-59/U e RG-62/U.

O cabo 10Base5 é o mais antigo, usado geralmente em redes baseadas em mainframes. Este cabo é muito grosso, tem cerca de 0.4 polegadas, ou quase 1 cm de diâmetro e por isso é muito caro e difícil de instalar devido à baixa flexibilidade. Outro tipo de cabo coaxial é o RG62/U, usado em redes Arcnet. Temos também o cabo RG-59/U, usado na fiação de antenas de TV.

Os cabos 10Base2, também chamados de cabos coaxiais finos, ou cabos Thinnet, são os cabos coaxiais usados atualmente em redes Ethernet, e por isso, são os cabos que você receberá quando pedir por “cabos coaxiais de rede”. Seu diâmetro é de apenas 0.18 polegadas, cerca de 4.7 milímetros, o que os torna razoavelmente flexíveis.

Os cabos coaxiais são cabos constituídos de 4 camadas: um condutor interno, o fio de cobre que transmite os dados; uma camada isolante de plástico, chamada de dielétrico que envolve o cabo interno; uma malha de metal que protege as duas camadas internas e, finalmente, uma nova camada de revestimento, chamada de jaqueta.



O cabo Thin Ethernet deve formar uma linha que vai do primeiro ao último PC da rede, sem formar desvios. Não é possível portanto formar configurações nas quais o cabo forma um “Y”, ou que usem qualquer tipo de derivação. Apenas o primeiro e o último micro do cabo devem utilizar o terminador BNC.



O Cabo 10base2 tem a vantagem de dispensar hubs, pois a ligação entre os micros é feita através do conector “T”, mesmo assim o cabo coaxial caiu em desuso devido às suas desvantagens:

Custo elevado
Instalação mais difícil e mais fragilidade
Se o terminador for retirado do cabo, toda a rede sai do ar.

Redes formadas por cabos Thin Ethernet são de implementação um pouco complicada. É preciso adquirir ou construir cabos com medidas de acordo com a localização física dos PCs. Se um dos PCs for reinstalado em outro local é preciso utilizar novos cabos, de acordo com as novas distâncias entre os PCs. Pode ser preciso alterar duas ou mais seções de cabo de acordo com a nova localização dos computadores. Além disso, os cabos coaxiais são mais caros que os do tipo par trançado.



O “10” na sigla 10Base2, significa que os cabos podem transmitir dados a uma velocidade de até 10 megabits por segundo, “Base” significa “banda base” e se refere à distância máxima para que o sinal pode percorrer através do cabo, no caso o “2” que teoricamente significaria 200 metros, mas que na prática é apenas um arredondamento, pois nos cabos 10Base2 a distância máxima utilizável é de 185 metros.



Usando cabos 10Base2, o comprimento do cabo que liga um micro ao outro deve ser de no mínimo 50 centímetros, e o comprimento total do cabo (do primeiro ao último micro) não pode superar os 185 metros. É permitido ligar até 30 micros no mesmo cabo, pois acima disso, o grande número de colisões de pacotes irá prejudicar o desempenho da rede, chegando a ponto de praticamente impedir a comunicação entre os micros em casos extremos.

CABOS DE FIBRA ÓPTICA, cabos de fibra óptica, cabos de fibra, CABOS DE FIBRA.

Sem as fibras ópticas, a Internet e até o sistema telefônico que temos hoje seriam inviáveis. Com a migração das tecnologias de rede para padrões de maiores velocidades como ATM, Gigabit Ethernet e 10 Gigabit Ethernet, o uso de fibras ópticas vem ganhando força também nas redes locais. O produto começou a ser fabricado em 1978 e passou a substituir os cabos coaxiais nos Estados Unidos na segunda metade dos anos 80. Em 1988, o primeiro cabo submarino de fibras ópticas mergulhou no oceano, dando inicio a superestrada da informação. O físico indiano Narinder Singh Kanpany é o inventor da fibra óptica, que passou a ter aplicações praticas na década de 60 com o advento da criação de fontes de luz de estado sólido, como o raio laser e o LED, diodo emissor de luz. Sua origem, porem, data do século 19, com os primeiros estudos sobre os efeitos da luz. Existem dois tipos de fibras ópticas: As fibras multímodo e as monomodo. A escolha de um desses tipos dependera da aplicação da fibra. As fibras multímodo são mais utilizadas em aplicações de rede locais (LAN), enquanto as monomodo são mais utilizadas para aplicações de rede de longa distancia (WAN). São mais caras, mas também mais eficientes que as multímodo. Aqui no Brasil, a utilização mais ampla da fibra óptica teve inicio ma segunda metade dos anos 90, impulsionada pela implementação dos backbones das operadoras de redes metropolitanas.

Em 1966, num comunicado dirigido à Bristish Association for the Advancement of Science, os pesquisadores K.C.Kao e G.A.Hockham da Inglaterra propuseram o uso de fibras de vidro, e luz, em lugar de eletricidade e condutores de cobre na transmissão de mensagens telefônicas.

Ao contrário dos cabos coaxiais e de par trançado, que nada mais são do que fios de cobre que transportam sinais elétricos, a fibra óptica transmite luz e por isso é totalmente imune a qualquer tipo de interferência eletromagnética. Além disso, como os cabos são feitos de plástico e fibra de vidro (ao invés de metal), são resistentes à corrosão.

O cabo de fibra óptica é formado por um núcleo extremamente fino de vidro, ou mesmo de um tipo especial de plástico. Uma nova cobertura de fibra de vidro, bem mais grossa envolve e protege o núcleo. Em seguida temos uma camada de plástico protetora chamada de cladding, uma nova camada de isolamento e finalmente uma capa externa chamada bainha:






A transmissão de dados por fibra óptica é realizada pelo envio de um sinal de luz codificado, dentro do domínio de freqüência do infravermelho a uma velocidade de 10 a 15 MHz. As fontes de transmissão de luz podem ser diodos emissores de luz (LED) ou lasers semicondutores. O cabo óptico com transmissão de raio laser é o mais eficiente em potência devido a sua espessura reduzida. Já os cabos com diodos emissores de luz são muito baratos, além de serem mais adaptáveis à temperatura ambiente e de terem um ciclo de vida maior que o do laser.

O cabo de fibra óptica pode ser utilizado tanto em ligações ponto a ponto quanto em ligações multímodo. A fibra óptica permite a transmissão de muitos canais de informação de forma simultânea pelo mesmo cabo. Utiliza, por isso, a técnica conhecida como multiplexação onde cada sinal é transmitido numa freqüência ou num intervalo de tempo diferente.










A fibra óptica tem inúmeras vantagens sobre os condutores de cobre, sendo as principais:

Maior alcance
Maior velocidade
Imunidade a interferências eletromagnéticas

O custo do metro de cabo de fibra óptica não é elevado em comparação com os cabos convencionais. Entretanto seus conectores são bastante caros, assim como a mão de obra necessária para a sua montagem. A montagem desses conectores, além de um curso de especialização, requer instrumentos especiais, como microscópios, ferramentas especiais para corte e polimento, medidores e outros aparelhos sofisticados.

















Devido ao seu elevado custo, os cabos de fibras ópticas são usados apenas quando é necessário atingir grandes distâncias em redes que permitem segmentos de até 1 KM, enquanto alguns tipos de cabos especiais podem conservar o sinal por até 5 KM (distâncias maiores são obtidas usando repetidores).

Mesmo permitindo distâncias tão grandes, os cabos de fibra óptica permitem taxas de transferências de até 155 mbps, sendo especialmente úteis em ambientes que demandam uma grande transferência de dados. Como não soltam faíscas, os cabos de fibra óptica são mais seguros em ambientes onde existe perigo de incêndio ou explosões. E para completar, o sinal transmitido através dos cabos de fibra é mais difícil de interceptar, sendo os cabos mais seguros para transmissões sigilosas. A seguir veremos os padrões mais comuns de redes usando fibra ótica:

FDDI (Fiber Distributed Data Interface)
FOIRL (Fiber- Optic InterRepeater Link)
10BaseFL
100BaseFX
1000BaseSX
1000BaseLX
 
BlogBlogs.Com.Br